

纤维素基材的 DEAE 离子交换凝胶填料的纯化应用

离子交换色谱法广泛用于蛋白质，多糖等的分离纯化，其中 DEAE 是比较常用的类型之一。纤维素基材与葡聚糖，琼脂糖相比，具有机械强度高，溶出物少等优点；与人工合成聚合体类填充剂相比又具体非特异性吸附少等的优点，因此在纯化分离中越来越被广泛应用。本文章以 Waterman DEAE－52 和 JNC 的 A－200 和 A－500 为例给大家介绍具体的应用实例：

DEAE－52 纤维素填料，以纤维素为母体接有二乙基氨基乙基（DEAE）活性基团的弱碱性阴离子交换剂。它采用平均粒径为 $50 \mu \mathrm{~m}$ 的颗粒型亲水高分子聚合物，表面又用大分子糖链接枝，使它有更高的比表面积和更好的生物兼容性，它在高流水下保持更高载量，同时又具有更好的分辨率。由于比表面积大，平衡和洗脱的时间也更短。它经过接枝即使是纯化病毒，质粒等超大分子的物质，载量基本保持不变。

特点	载量大，分辨率好，流速高，使用方便。
基质	高度交联纤维素
配基	二乙基氨基乙基
配基密度	$40 \mu \mathrm{~mol} / \mathrm{ml}$
吸附载量	180mg HSA／ml
填料的颗粒大小	50رm
最大流速	$300 \mathrm{~cm} / \mathrm{h}$
pH 范围	3－10，在位清洗时 pH 范围可到 2－11
化学稳定性	各种媛冲液及盐， 0.5 M NaOH 及醋酸， 8 M 脲， 6 M 盐酸胍，乙醇，异丙醇等
物理稳定性	0.1 M 中性缓冲液中， $120^{\circ} \mathrm{C} 30 \mathrm{~min}$
保存温度	$+4 \sim 30^{\circ} \mathrm{C}$
保存	干粉，1g＝3－4ml

应用实例：

1．胀果甘草多糖的分离纯化
胀果甘草通过水提醇沉，再以 Sevag 法和反复醇洗除去蛋白质和色素，得到粗多糖。经 DEAE－52 离子交换柱色谱及 Sepharose CL－6B 和 Sephadex G－50 凝胶柱色谱反复分离纯化，首次从该植物中得到 13 个均一多糖组分，并研究分析了胀果甘草粗多糖和各均一多糖的性质和化学结构。

图1 胀果甘草粗多糖 GiP 的高效凝胶渗透色谱图

2．大黄多糖的分离纯化
采用传统提取工艺得到大黄粗多糖，然后经 DEAE－52 纤维素柱层析，Sephacryl S－200 凝胶柱层析对粗多糖进行分离纯化，最终得到 3 种均一多糖即 RP－1，RP－2，RP－3。

图2 大黄粗多糖的凝胶色谱图

3．DEAE－52 层析对猪血清 IgG 提纯得率的影响

用硫酸铵盐析和 DEAE－52 阴离子交换层析两步法提纯猪血清 IgG，以 SDS－PAGE， Bradford 法浓度测定和免疫双扩散来分析 DEAE－52 层析对 IgG 得率的影响。结果说明： DEAE－52 层析获得两个分来明显无重叠洗脱峰，两峰均含有 IgG，其中第一峰蛋白纯度达 95.7% ，得率为 $3.0 \sim 4.0 \mathrm{mg} / \mathrm{ml}$ 血清；第二峰 IgG 纯度 59% 。

目前，以 Whatman 公司的 DEAE－52 弱阴离子交换树脂为代表的老一代的纤维素填料己经停产，相对较传统的 DEAE－52 层析介质，Cellufine 凝胶是一种以交联的球状纤维素作为基质材料的填充剂。Cellufine 填料是将纤维素溶解成纤维，然后使用特殊方法，使得纤维聚成球，所以粒径均匀，耐压性好；而 Whatman 的 DEAE－52，只是将纤维素打碎，所以从微观上看，大小不均一，承受压力的能力也较差。Cellufine A－200 和 A－500 的吸附率比 DEAE－52 高 10 倍以上！

Raw Materials

Base Resin

Porosity，Particle size，Hardness

基质	交联纤维素（球形，多孔）
配基	二乙基氨基乙基
填料的颗粒大小	$40-130 \mu \mathrm{~m}$
pH 范围	$1-13$
交换容量（meq／g）	$\mathrm{A}-200(0.8-1.1)$ ；A－500（1．1－1．4）
化学稳定性	几乎在所有的盐类，表面活性剂，下列溶剂，酸，碱中都可以使用 ： 8 MM －尿素，6M－胍／盐酸， 0.1 N －盐酸， 0.1 N －氢氧化钠
物理稳定性	可高温高压蒸煮（ $120^{\circ} \mathrm{C}, 60 \mathrm{~min}$ ）
操作压力	$<2 \mathrm{Lbar}$
保存	20\％乙醇水溶液

Company	JNC	Manufacturer A	Manufacturer B
Raw Materials	Cellulose （polysaccharide）	Agarose （polysaccharide）	Synthetic polymer
Origin	Plant	Plant	Chemicals
Structure	Cross－linking		
agents（example）			

作为色谱基材，纤维素填料因其直链大分子间通过氢键共价作用形成立体空间结构，使其分子间结构更稳定

4纤维素基材的填料刚性好，稳定性强。
4 生物兼容性好。
4 非特异性吸附率低。

结构式：

－DEAE

Cellufine A－200
Cellufine A－500
Cellufine A－800

应用实例：

1．人血清血蛋白与血色素

色谱柱：内径 $15 \mathrm{~mm} \times$ 柱长 170 mm
缓冲液：0．05M Tris－HCl（pH 8．3）
$\mathbf{0 \sim 0 . 4 M ~ N a C l}$
梯度洗脱
流量：50ml／hr
样品：HAS 25mg，血色素（ $25 \mathrm{mg} / \mathrm{ml}$ 溶于缓冲液）

2．转铁蛋白，牛血清白蛋白，胃蛋白酶

色谱柱：内径 $5 \mathrm{~mm} \times$ 柱长 50 mm
缓冲液 A ：0．05M Tris－HCI（pH 8．5）
缓冲液 B ：0．05M Tris－HCl（pH 8．5）1M NaCl

$$
\text { (0 } \rightarrow 75 \% \text { 梯度洗脱) }
$$

流量： $0.86 \mathrm{ml} / \mathrm{min}$
样品：转铁蛋白 $5 \mathrm{mg} / \mathrm{ml}$ ，牛血清白蛋白 $10 \mathrm{mg} / \mathrm{ml}$ ，

胃蛋白酶 $5 \mathrm{mg} / \mathrm{ml}$

更多的应用例子浏览以下链接：
http：／／www．prep－hplc．com／products＿detail02／\＆productId＝5c613d0f－8964－47
4c－a9c3－82cc13d82935\＆comp＿stats＝comp－FrontProducts＿list01－1303970946 666．html

同时，为了让大家有机会亲自体验 Cellufine 凝胶填料在纯化上的应用魅力，慧德易作为 JNC 公司 Cellufine 凝胶填料在中国的总代理，可提供免费样品供大家试用，数量有限，预试从速！请从以下链接下载试用表格：
http：／／www．prep－hplc．com／download＿detail／\＆downloadsId＝931422d0－3e26－
460a－8c33－3288166d6847\＆comp＿stats＝comp－FrontDownloads＿list01－001．ht ml

